7,056 research outputs found

    Kinematic Analysis and Trajectory Planning of the Orthoglide 5-axis

    Get PDF
    The subject of this paper is about the kinematic analysis and the trajectory planning of the Orthoglide 5-axis. The Orthoglide 5-axis a five degrees of freedom parallel kinematic machine developed at IRCCyN and is made up of a hybrid architecture, namely, a three degrees of freedom translational parallel manip-ulator mounted in series with a two degrees of freedom parallel spherical wrist. The simpler the kinematic modeling of the Or-thoglide 5-axis, the higher the maximum frequency of its control loop. Indeed, the control loop of a parallel kinematic machine should be computed with a high frequency, i.e., higher than 1.5 MHz, in order the manipulator to be able to reach high speed motions with a good accuracy. Accordingly, the direct and inverse kinematic models of the Orthoglide 5-axis, its inverse kine-matic Jacobian matrix and the first derivative of the latter with respect to time are expressed in this paper. It appears that the kinematic model of the manipulator under study can be written in a quadratic form due to the hybrid architecture of the Orthoglide 5-axis. As illustrative examples, the profiles of the actuated joint angles (lengths), velocities and accelerations that are used in the control loop of the robot are traced for two test trajectories.Comment: Appears in International Design Engineering Technical Conferences \& Computers and Information in Engineering Conference, Aug 2015, Boston, United States. 201

    Progress using generalized lattice Dirac operators to parametrize the Fixed-Point QCD action

    Get PDF
    We report on an ongoing project to parametrize the Fixed-Point Dirac operator for massless quarks, using a very general construction which has arbitrarily many fermion offsets and gauge paths, the complete Clifford algebra and satisfies all required symmetries. Optimizing a specific construction with hypercubic fermion offsets, we present some preliminary results.Comment: Lattice 2000 (Improvement), 9 pages, based on a talk by K.H. and a poster by T.J. References adde

    The construction of generalized Dirac operators on the lattice

    Get PDF
    We discuss the steps to construct Dirac operators which have arbitrary fermion offsets, gauge paths, a general structure in Dirac space and satisfy the basic symmetries (gauge symmetry, hermiticity condition, charge conjugation, hypercubic rotations and reflections) on the lattice. We give an extensive set of examples and offer help to add further structures.Comment: 19 pages, latex, maple code attache

    Model for the hydrogen adsorption on carbon nanostructures

    Get PDF
    The hydrogen sorption capacity of carbon nanostructures was for several years a very controversial subject. Theoretical models have been published demonstrating a great potential for a large hydrogen sorption capacity of carbon nanostructures. Here we present a simple empirical model where condensation of hydrogen as a monolayer at the surface of nanotubes as well as bulk condensation in the cavity of the tube is assumed. The maximum potential amount of hydrogen absorbed according to the model was calculated to be 2.28×10-3mass % S[m2g-1]=3.0mass % for the adsorption of a monolayer hydrogen at the surface. The condensation of hydrogen in the cavity of the tube leads to a potential absorption for single wall nanotubes starting at 1.5mass % and increasing with the diameter of the tubes. The experimentally measured hydrogen capacity of the nanotube samples correlates with the B.E.T. specific surface area. The slope of the linear relationship is 1.5×10-3mass %/m2g-1. Therefore, the extrapolated maximum discharge capacity of a carbon sample is 2mass %. Furthermore, it can be concluded, that the hydrogen sorption mechanism is related to the surface of the sample, i.e. a surface adsorption proces

    The PAS-domain kinase PASKIN: a new sensor in energy homeostasis

    Get PDF
    Abstract.: The PAS domain kinase PASKIN, also termed PAS kinase or PASK, is an evolutionarily conserved potential sensor kinase related to the heme-based oxygen sensors of nitrogen-fixing bacteria. In yeast, the two PASKIN homologs link energy flux and protein synthesis following specific stress conditions. In mammals, PASKIN may regulate glycogen synthesis and protein translation. Paskin knock-out mice do not show any phenotype under standard animal husbandry conditions. Interestingly, these mice seem to be protected from the symptoms of the metabolic syndrome when fed a high-fat diet. Energy turnover might be increased in specific PASKIN-deficient cell types under distinct environmental conditions. According to the current model, binding of a putative ligand to the PAS domain disinhibits the kinase domain and activates PASKIN auto- and target phosphorylation. Future research needs to be conducted to elucidate the nature of the putative ligand and the molecular mechanisms of downstream signalling by PASKI

    Excitation Enhancement of a Quantum Dot Coupled to a Plasmonic Antenna

    Full text link
    Plasmonic antennas are key elements to control the luminescence of quantum emitters. However, the antenna's influence is often hidden by quenching losses. Here, the luminescence of a quantum dot coupled to a gold dimer antenna is investigated. Detailed analysis of the multiply excited states quantifies the antenna's influence on the excitation intensity and the luminescence quantum yield separately

    Casa de alta montaña

    Get PDF
    En Rosswald, dominando el valle del RĂłdano y a 1.800 m de altura, estĂĄ situada esta pequeña vivienda, de construcciĂłn sencilla y lĂ­nea graciosa, cuya misiĂłn es el procurar refugio y descanso a sus habitantes, que, segĂșn costumbre tradicional, pasan en la regiĂłn un mĂ­nimo de dos meses al año

    Porous silica spheres as indoor air pollutant scavengers

    Get PDF
    Porous silica spheres were investigated for their effectiveness in removing typical indoor air pollutants, such as aromatic and carbonyl-containing volatile organic compounds (VOCs), and compared to the commercially available polymer styrene-divinylbenzene (XAD-4). The silica spheres and the XAD-4 resin were coated on denuder sampling devices and their adsorption efficiencies for volatile organic compounds evaluated using an indoor air simulation chamber. Real indoor sampling was also undertaken to evaluate the affinity of the silica adsorbents for a variety of indoor VOCs. The silica sphere adsorbents were found to have a high affinity for polar carbonyls and found to be more efficient than the XAD-4 resin at adsorbing carbonyls in an indoor environment
    • 

    corecore